Maths Chapter 12 – Linear Programming MCQ Question Answers for CUET 2024

1. The objective function of a linear programming problem is:
a.
b.
c.
d.

2. Question
a.
b.
c.
d.

3. The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

4. Maximize Z = 3x + 5y, subject to constraints: x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
a.
b.
c.
d.

5. Feasible region in the set of points which satisfy
a.
b.
c.
d.

6. The point which does not lie in the half plane 2x + 3y -12 < 0 is
a.
b.
c.
d.

7. Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0
a.
b.
c.
d.

8. A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its
a.
b.
c.
d.

9. A feasible solution to an LP problem,
a.
b.
c.
d.

10. Maximize Z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.

11. In equation 3x – y ≥ 3 and 4x – 4y > 4
a.
b.
c.
d.

12. Question
a.
b.
c.
d.

13. In maximization problem, optimal solution occurring at corner point yields the
a.
b.
c.
d.

14. The linear inequalities or equations or restrictions on the variables of a linear programming problem are called:
a.
b.
c.
d.

15. The maximum value of Z = 3x + 4y subjected to constraints x + y ≤ 40, x + 2y ≤ 60, x ≥ 0 and y ≥ 0 is
a.
b.
c.
d.

16. Question
a.
b.
c.
d.

17. Question
a.
b.
c.
d.

18. The optimal value of the objective function is attained at the points:
a.
b.
c.
d.

19. Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
a.
b.
c.
d.

20. In solving the LPP: “minimize f = 6x + 10y subject to constraints x ≥ 6, y ≥ 2, 2x + y ≥ 10, x ≥ 0, y ≥ 0” redundant constraints are
a.
b.
c.
d.

21. A set of values of decision variables that satisfies the linear constraints and non-negativity conditions of an L.P.P. is called its:
a.
b.
c.
d.

22. For the LP problem maximize z = 2x + 3y The coordinates of the corner points of the bounded feasible region are A(3, 3), B(20,3), C(20, 10), D(18, 12) and E(12, 12). The minimum value of z is
a.
b.
c.
d.

23. In a LPP, the objective function is always
a.
b.
c.
d.

24. Z = 8x + 10y, subject to 2x + y ≥ 1, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
a.
b.
c.
d.

25. The maximum value of f = 4x + 3y subject to constraints x ≥ 0, y ≥ 0, 2x + 3y ≤ 18; x + y ≥ 10 is
a.
b.
c.
d.


 


Also See :