Maths Chapter 12 – Linear Programming MCQ Question Answers for CUET 2024

1. Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0
a.
b.
c.
d.

2. Region represented by x ≥ 0, y ≥ 0 is:
a.
b.
c.
d.

3. A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its
a.
b.
c.
d.

4. The maximum value of f = 4x + 3y subject to constraints x ≥ 0, y ≥ 0, 2x + 3y ≤ 18; x + y ≥ 10 is
a.
b.
c.
d.

5. Question
a.
b.
c.
d.

6. The minimum value of Z = 4x + 3y subjected to the constraints 3x + 2y ≥ 160, 5 + 2y ≥ 200, 2y ≥ 80; x, y ≥ 0 is
a.
b.
c.
d.

7. Objective function of a L.P.P.is
a.
b.
c.
d.

8. Question
a.
b.
c.
d.

9. Feasible region in the set of points which satisfy
a.
b.
c.
d.

10. Question
a.
b.
c.
d.

11. Objective function of a linear programming problem is
a.
b.
c.
d.

12. A set of values of decision variables that satisfies the linear constraints and non-negativity conditions of an L.P.P. is called its:
a.
b.
c.
d.

13. Maximize Z = 3x + 5y, subject to constraints: x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
a.
b.
c.
d.

14. For the LP problem maximize z = 2x + 3y The coordinates of the corner points of the bounded feasible region are A(3, 3), B(20,3), C(20, 10), D(18, 12) and E(12, 12). The minimum value of z is
a.
b.
c.
d.

15. The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

16. Maximize Z = 11 x + 8y subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.

17. In solving the LPP: “minimize f = 6x + 10y subject to constraints x ≥ 6, y ≥ 2, 2x + y ≥ 10, x ≥ 0, y ≥ 0” redundant constraints are
a.
b.
c.
d.

18. Maximize Z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.

19. In equation 3x – y ≥ 3 and 4x – 4y > 4
a.
b.
c.
d.

20. Question
a.
b.
c.
d.

21. The point which does not lie in the half plane 2x + 3y -12 < 0 is
a.
b.
c.
d.

22. A feasible solution to an LP problem,
a.
b.
c.
d.

23. The point which does not lie in the half-plane 2x + 3y -12 < 0 is:
a.
b.
c.
d.

24. Corner points of the bounded feasible region for an LP problem are A(0,5) B(0,3) C(1,0) D(6,0). Let z=−50x + 20y be the objective function. Minimum value of z occurs at ______ center point.
a.
b.
c.
d.

25. Which of the following is a type of  Linear programming problem?
a.
b.
c.
d.


 


Also See :