Maths Chapter 12 – Linear Programming MCQ Question Answers for CUET 2024

1. The point which does not lie in the half plane 2x + 3y -12 < 0 is
a.
b.
c.
d.

2. A set of values of decision variables that satisfies the linear constraints and non-negativity conditions of an L.P.P. is called its:
a.
b.
c.
d.

3. In maximization problem, optimal solution occurring at corner point yields the
a.
b.
c.
d.

4. The optimal value of the objective function is attained at the points:
a.
b.
c.
d.

5. The maximum value of Z = 3x + 4y subjected to constraints x + y ≤ 4, x ≥ 0 and y ≥ 0 is:
a.
b.
c.
d.

6. The region represented by the inequation system x, y ≥ 0, y ≤ 6, x + y ≤ 3 is
a.
b.
c.
d.

7. Z = 8x + 10y, subject to 2x + y ≥ 1, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
a.
b.
c.
d.

8. Maximize Z = 11 x + 8y subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.

9. The maximum value of the object function Z = 5x + 10 y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

10. The objective function of a linear programming problem is:
a.
b.
c.
d.

11. A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of a L.P.P. is called its
a.
b.
c.
d.

12. Region represented by x ≥ 0, y ≥ 0 is:
a.
b.
c.
d.

13. Question
a.
b.
c.
d.

14. Question
a.
b.
c.
d.

15. The linear inequalities or equations or restrictions on the variables of a linear programming problem are called:
a.
b.
c.
d.

16. Question
a.
b.
c.
d.

17. Maximize Z = 3x + 5y, subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
a.
b.
c.
d.

18. The maximum value of Z = 4x + 2y subject to the constraints 2x + 3y ≤ 18, x + y ≥ 10, x, y ≤ 0 is
a.
b.
c.
d.

19. Which of the following is a type of  Linear programming problem?
a.
b.
c.
d.

20. Of all the points of the feasible region for maximum or minimum of objective function the points
a.
b.
c.
d.

21. Question
a.
b.
c.
d.

22. Corner points of the bounded feasible region for an LP problem are A(0,5) B(0,3) C(1,0) D(6,0). Let z=−50x + 20y be the objective function. Minimum value of z occurs at ______ center point.
a.
b.
c.
d.

23. The maximum value of f = 4x + 3y subject to constraints x ≥ 0, y ≥ 0, 2x + 3y ≤ 18; x + y ≥ 10 is
a.
b.
c.
d.

24. Question
a.
b.
c.
d.

25. Maximize Z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0
a.
b.
c.
d.


 


Also See :