Maths Chapter 12 – Linear Programming MCQ Question Answers for Various Entrance Exams

 

1. Question
a.
b.
c.
d.

2. The point which does not lie in the half-plane 2x + 3y -12 < 0 is:
a.
b.
c.
d.

3. Objective function of a L.P.P.is
a.
b.
c.
d.

4. In a LPP, the objective function is always
a.
b.
c.
d.

5. Question
a.
b.
c.
d.

6. A feasible solution to an LP problem,
a.
b.
c.
d.

7. Maximize Z = 3x + 5y, subject to constraints: x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
a.
b.
c.
d.

8. Maximize Z = 11 x + 8y subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0.
a.
b.
c.
d.

9. Feasible region in the set of points which satisfy
a.
b.
c.
d.

10. The optimal value of the objective function is attained at the points
a.
b.
c.
d.

11. The minimum value of Z = 3x + 5y subjected to constraints x + 3y ≥ 3, x + y ≥ 2, x, y ≥ 0 is:
a.
b.
c.
d.

12. Question
a.
b.
c.
d.

13. Question
a.
b.
c.
d.

14. Question
a.
b.
c.
d.

15. The maximum value of Z = 3x + 4y subjected to constraints x + y ≤ 40, x + 2y ≤ 60, x ≥ 0 and y ≥ 0 is
a.
b.
c.
d.

16. Region represented by x ≥ 0, y ≥ 0 is:
a.
b.
c.
d.

17. Which of the following is a type of  Linear programming problem?
a.
b.
c.
d.

18. Corner points of the bounded feasible region for an LP problem are A(0,5) B(0,3) C(1,0) D(6,0). Let z=−50x + 20y be the objective function. Minimum value of z occurs at ______ center point.
a.
b.
c.
d.

19. Question
a.
b.
c.
d.

20. In equation 3x – y ≥ 3 and 4x – 4y > 4
a.
b.
c.
d.

21. Of all the points of the feasible region for maximum or minimum of objective function the points
a.
b.
c.
d.

22. Objective function of a linear programming problem is
a.
b.
c.
d.

23. The maximum value of z = 3x + 2y subject to x + 2y ≥ 2, x + 2y ≤ 8, x, y ≥ 0 is
a.
b.
c.
d.

24. Question
a.
b.
c.
d.

25. The maximum value of f = 4x + 3y subject to constraints x ≥ 0, y ≥ 0, 2x + 3y ≤ 18; x + y ≥ 10 is
a.
b.
c.
d.


 


 

Also See :