Maths Chapter 1 – Relations and Functions MCQ Question Answers for Various Entrance Exams

1. The function f : R → R defined by f(x) = 3 – 4x is
a.
b.
c.
d.

2. Question
a.
b.
c.
d.

3. Question
a.
b.
c.
d.

4. Question
a.
b.
c.
d.

5. If N be the set of all-natural numbers, consider f : N → N such that f(x) = 2x, ∀ x ∈ N, then f is
a.
b.
c.
d.

6. Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is
a.
b.
c.
d.

7. Question
a.
b.
c.
d.

8. The smallest integer function f(x) = [x] is
a.
b.
c.
d.

9. The maximum number of equivalence relations on the set A = {1, 2, 3} are
a.
b.
c.
d.

10. If a matrix A is both symmetric and skew-symmetric, then
a.
b.
c.
d.

11. Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is
a.
b.
c.
d.

12. Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is
a.
b.
c.
d.

13. Question
a.
b.
c.
d.

14. Question
a.
b.
c.
d.

15. Question
a.
b.
c.
d.

16.

Question

a.
b.
c.
d.

17. Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then the values of a.b + b.c + c.a is
a.
b.
c.
d.

18. Question
a.
b.
c.
d.

19. Question
a.
b.
c.
d.

20. Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
a.
b.
c.
d.

21. Question
a.
b.
c.
d.

22. Region represented by x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

23. The number of commutative binary operations that can be defined on a set of 2 elements is
a.
b.
c.
d.

24. Question
a.
b.
c.
d.

25. Question
a.
b.
c.
d.

Also See :