Maths Chapter 1 – Relations and Functions MCQ Question Answers for Various Entrance Exams

 

1. Question
a.
b.
c.
d.

2. Z = 7x + y, subject to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0. The minimum value of Z occurs at
a.
b.
c.
d.

3. Question
a.
b.
c.
d.

4. The function f : R → R defined by f(x) = 3 – 4x is
a.
b.
c.
d.

5.

Question

a.
b.
c.
d.

6. Question
a.
b.
c.
d.

7. Question
a.
b.
c.
d.

8. Region represented by x ≥ 0, y ≥ 0 is
a.
b.
c.
d.

9. Question
a.
b.
c.
d.

10. Question
a.
b.
c.
d.

11. Question
a.
b.
c.
d.

12. The maximum number of equivalence relations on the set A = {1, 2, 3} are
a.
b.
c.
d.

13. Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is
a.
b.
c.
d.

14. Let R be the relation “is congruent to” on the set of all triangles in a plane is
a.
b.
c.
d.

15. Objective function of a L.P.P.is
a.
b.
c.
d.

16. Question
a.
b.
c.
d.

17. Question
a.
b.
c.
d.

18. Question
a.
b.
c.
d.

19. If N be the set of all-natural numbers, consider f : N → N such that f(x) = 2x, ∀ x ∈ N, then f is
a.
b.
c.
d.

20. Total number of equivalence relations defined in the set S = {a, b, c} is
a.
b.
c.
d.

21. Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then the values of a.b + b.c + c.a is
a.
b.
c.
d.

22. If * is a binary operation on set of integers I defined by a * b = 3a + 4b – 2, then find the value of 4 * 5.
a.
b.
c.
d.

23. Question

a.
b.
c.
d.

24. The smallest integer function f(x) = [x] is
a.
b.
c.
d.

25. Let A = {1, 2, 3}. Then the number of relations containing (1, 2) and (1, 3), which are reflexive and symmetric but not transitive is
a.
b.
c.
d.


 


 

Also See :