Entrance Exam

Your No1 source for Latest Entrance Exams, Admission info






Examsyllabus > Engineering Entrance Exam Syllabus > GATE Syllabus 2019 for Chemistry XL-P – GATE Exam Syllabus

GATE Syllabus 2019 for Chemistry XL-P – GATE Exam Syllabus

GATE Exam Syllabus 2019 for Chemistry XL-P

Chemistry (XL-P)

GATE Chemistry XL-P Syllabus: Here we bring you the Gate 2019 Exam Syllabus for Chemistry subject to prepare for the Graduate Aptitude Test in Engineering (GATE), an all India level examination conducted by the GATE Committee. Check out the GATE Syllabus for Chemistry and other important aspects of the GATE Exam Chemistry Syllabus.

Section 1: Atomic Structure and Periodicity

Planck’s quantum theory, wave particle duality, uncertainty principle, quantum mechanical model of hydrogen atom, electronic configuration of atoms and ions. Periodic table and periodic properties: ionization energy, electron affinity, electronegativity and atomic size.

Section 2: Structure and Bonding

Ionic and covalent bonding, MO and VB approaches for diatomic molecules, VSEPR theory and shape of molecules, hybridization, resonance, dipole moment, structure parameters such as bond length, bond angle and bond energy,  hydrogen bonding and van der Waals interactions. Ionic solids, ionic radii and lattice energy (BornHaber cycle).  HSAB principle.

Section 3: s, p and d Block Elements

Oxides, halides and hydrides of alkali, alkaline earth metals, B, Al, Si, N, P, and S. General characteristics of 3d elements. Coordination complexes: valence bond and crystal field theory, color, geometry, magnetic properties and isomerism.

Section 4: Chemical Equilibria

Colligative properties of solutions, ionic equilibria in solution, solubility product, common ion effect, hydrolysis of salts, pH, buffer  and  their  applications.  Equilibrium constants (Kc, Kp and Kx) for homogeneous reactions.

Section 5: Electrochemistry

Conductance, Kohlrausch law, cell potentials, emf, Nernst equation, Galvanic cells, thermodynamic aspects and their applications.

Section 6: Reaction Kinetics

Rate constant, order of reaction, molecularity, activation energy, zero, first and second order kinetics, catalysis and elementary enzyme reactions.

Section 7: Thermodynamics

First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff equation, heat of reaction, Hess’s law, heat of  formation. Second law, entropy,  free energy and work function. GibbsHelmholtz equation, ClausiusClapeyron equation, free energy change, equilibrium constant and Trouton’s rule. Third law of thermodynamics.

Section 8: Structure-Reactivity Correlations and Organic Reaction Mechanisms

Acids and bases, electronic and steric effects, optical and geometrical isomerism, tautomerism, conformers and concept of aromaticity.  Elementary  treatment  of SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, addition reactions, Markownikoff rule and Kharash effect. Aromatic electrophilic substitutions, orientation effect as exemplified by various functional groups. DielsAlder, Wittig  and hydroboration reactions. Identification of  functional  groups  by  chemical tests.

Tags: ,

Leave a Reply

Your email address will not be published. Required fields are marked *

twenty − fourteen =